ตรวจสอบ ซ่อมแซม โครงสร้าง

งานทดสอบและตรวจสอบอาคาร TESTING

    การทดสอบและตรวจสอบโครงสร้างของอาคาร มุ่งเน้นตรวจสอบกำลังของโครงสร้าง ว่าได้ตามมาตรฐานหรือไม่ เพื่อใช้เป็นแนวทางในการซ่อมแซมหรือปรับปรุงคุณภาพต่อไป ซึ่งมีวิธีการดังนี้

    1. ตรวจสอบทางกายภาพ Geometry Survey
    2. ขุดดิน และสำรวจฐานราก
    3. ตรวจสอบระดับ และอัตราการทรุดตัวของอาคาร Elevation Survey
    4. ตรวจสอบคุณภาพของคอนกรีต 
       Rebound number / Schmidt Hammer Test (ASTM C 805)
    5. ตรวจสอบค่ากำลังอัดสูงสุดของคอนกรีตโดยวิธี 
       Ultrasonic Pulse Velocity Test (PUNDIT, ASTM C 597)
    6. เจาะเก็บแท่งตัวอย่าง Core Sampling (ASTM C 42 And C 39)
    7. ทดสอบกำลังดึงของเหล็กเสริม  โดยตัดแท่งตัวอย่างจากองค์อาคาร 
       Specimen Sampling (ASTM A370 / ASTM E 8)  
    8. ตรวจสอบกำลังของเหล็กเสริมโดยวิธี Hardness Test (ASTM E 10 / ASTM E 18)
    9. ตรวจสอบตำแหน่งและขนาดของเหล็กเสริม Ferro Scan / Covermeter Test  
    10. ตรวจสอบสภาพความเป็นกรด - ด่างของผิวคอนกรีต
        Carbonation Test (pH meter)
    11. ตรวจสอบปริมาณคลอไรด์ของคอนกรีต Chloride Content Test (ASTM C 114)  
    12. ทดสอบการรับน้ำหนักบรรทุกขององค์อาคาร Load Test on Flexural Member (ACI 318)  
    13. ทดสอบการรับน้ำหนักบรรทุกของเสาเข็ม Pile Load Test (ASTM D 3689-83)  
    14. ตรวจสอบความยาวและความสมบูรณ์ของตัวเสาเข็มโดยวิธี Side Echo / Seismic Test ( ASTM D 5882-95 )
    15. เจาะดิน สำรวจและวิเคราะห์ข้อมูลชั้นดิน Soil Boring and Soil Testing
    16. ทดสอบการรับน้ำหนักของชั้นดิน Soil Bearing Test / Plate Bearing Test (ASTM D 1194)
    17. ตรวจสอบดิ่งลิฟท์    
    18. ตรวจสอบแนวโน้มการผุกร่อนของเหล็กเสริม Half - cell Potential Test (ASTM C 876)
    19. ทดสอบกำลังของคอนกรีตโดย Pull-Off Test (ASTM C 1583)
    20. ทดสอบประเมินผลกระทบจากแรงสั่นสะเทือนของโครงสร้างภายใต้สภาวะการใช้งาน Vibration Test
    21. ตรวจวัดการสั่งไหวของอาคาร Ambient vibration
    22. วิธีการอื่นๆ

ตรวจสอบโครงสร้างอาคาร ตรวจสอบความแข็งแรงโครงสร้าง ซ่อมแซมโครงสร้างอาคาร

ติดต่อบริษัท สยาม เรมีดี จำกัด 02-691-8454-55 , 086-459-0533 ID LINE : siamgroup 

คลิก!!! ดูผลงานเพิ่มเติม

    1.1 การสำรวจมิติต่าง ๆ ทางกายภาพของอาคาร เป็นการสำรวจสภาพภายนอกและภายในอาคารที่สามารถมองเห็น สำรวจสภาพการใช้พื้นที่ของอาคาร ทำการบันทึกตรวจวัดความยาว ความกว้างของอาคาร ตำแหน่งและขนาดพร้อมหน้าตัดของโครงสร้างอาคาร เช่น คาน, เสา เป็นต้น เพื่อนำไปเป็นข้อมูลในการจัดทำแบบแปลนของอาคารขึ้นใหม่

ตรวจสอบ ซ่อมแซม โครงสร้าง อาคาร     ตรวจสอบ ซ่อมแซม โครงสร้าง อาคาร     ตรวจสอบ ซ่อมแซม โครงสร้าง อาคาร     ตรวจสอบ ซ่อมแซม โครงสร้าง อาคาร 

ตรวจสอบ ซ่อมแซม โครงสร้าง อาคาร     ตรวจสอบ ซ่อมแซม โครงสร้าง อาคาร  

    1.2 การตรวจสอบบันทึกสภาพการแตกร้าวของอาคาร เนื่องจากสภาพการใช้งานชำรุดเสียหาย เพื่อเป็นข้อมูลเบื้องต้นประกอบการตรวจสอบความมั่งคงแข็งแรงของอาคารต่อไป
    การตรวจหารอยแตกร้าว (Cracks) เนื่องจากรอยร้าวเป็นสัญญาณเริ่มแรกที่บ่งชี้ว่าโครงสร้างเริ่มลดความแข็งแรง ทั้งรอยร้าวยังสามารถบอกถึงสาเหตุได้ การตรวจสอบแยกเป็น 
         •    ขนาดของรอยร้าว (ความลึก ความกว้าง และความยาว)
         •    ทิศทาง (ตามขวาง ตามยาว ตามแนวดิ่ง ตามแนวทแยง หรือมีการกระจายทั่วๆไป)
         •    ตำแหน่งรอยร้าว เป็นต้น


    เป็นการสำรวจมิติต่าง ๆ ของฐานรากอาคาร โดยบันทึกตรวจวัดความยาว ความกว้าง ตำแหน่งและขนาดรวมถึงลักษณะการเสริมเสาเข็ม เพื่อเป็นข้อมูลเบื้องต้นประกอบการตรวจสอบความมั่นคงแข็งแรงของอาคารต่อไป


    การตรวจสอบระดับพื้นและฝ้าเพดานของอาคาร จะทำให้ทราบถึงสภาพการทรุดตัวของอาคาร และยังเป็นข้อมูลเพื่อประกอบการประเมินว่าอาคารมีความปลอดภัยมากน้อยเพียงใด นอกจากนี้ในกรณีที่พบว่าอาคารมีการทรุดตัวมากในบริเวณใด ก็จะต้องตรวจสอบฐานรากและโครงสร้างในบริเวณนั้น ๆ ว่ามีความเสียหายมากน้อยเพียงใด
    การสำรวจค่าระดับการทรุดตัวของฐานรากและเสาแต่ละชุด เพื่อนำมากำหนดค่าระดับ (PROFILE) ว่าการทรุดตัวของอาคารมีลักษณะอย่างไร เพื่อกำหนดค่าระดับที่จะทำการปรับระดับ
และวิธีการยกปรับระดับให้ถูกต้อง
    การสำรวจค่าระดับเพื่อความถูกต้องของข้อมูล ได้กำหนดให้ทำวงรอบเพื่อตรวจสอบปรับแก้ค่าระดับอ้างอิงมาตรฐาน (B.M.) ให้ถูกต้อง ก่อนถ่ายระดับเข้าสู่ค่าระดับอ้างอิงชั่วคราว (T.B.M.) เพื่อนำไปใช้ในการสำรวจค่าระดับภายในอาคารต่อไป


    เป็นการตรวจสอบคุณภาพของคอนกรีตแบบไม่ทำลาย (Non-Destructive Testing) โดยวิธีวัดขนาดแรงสะท้อนด้วย Schmidt Hammer Test เพื่อประเมินค่ากำลังอัดสูงสุด (Maximum Compressive Strength) หรือค่า Fc’ โดยอาศัยการวัดค่าดัชนีสะท้อนกลับ (Rebound Number) ที่เกิดจากการกดแกนทดสอบ (Plunger) และกระบอกทดสอบ (Housing)
ให้ตั้งฉากกับผิวคอนกรีต แรงกระแทกจากสปริงภายในจะทำให้แกนทดสอบเกิดการสะท้อนกลับมีค่าดัชนีตั้งแต่ 10 ถึง 100 ขึ้นอยู่กับความสามารถในการดูดซับพลังงานของผิวคอนกรีต
ผิวคอนกรีตที่มีความแข็งแรงมากกว่าจะมีค่าดัชนีสะท้อนกลับสูงกว่า การทดสอบด้วยวิธีนี้ ดำเนินการตามมาตรฐาน ASTM C805
    เครื่องมือและอุปกรณ์การทดสอบประกอบด้วย ชุดทดสอบ Rebound Hammer Type N. ให้พลังงานกระแทก 2.207 Nm. ซึ่งเป็นชนิดที่ใช้สำหรับทดสอบคอนกรีตโครงสร้างอาคารทั่วไป การแปรผลทดสอบสามารถกระทำได้โดยตรงจากราฟความสัมพันธ์


    เป็นการการตรวจสอบโดยวิธีการส่งคลื่นความถี่สูง (Ultrasonic Pulse) ผ่านเข้าไปในตัวกลางเนื้อคอนกรีตที่ต้องการทดสอบ นำค่าที่ได้มาคำนวณหาค่าความเร็วคลื่น เพื่อนำไปแปรผลเป็นค่ากำลังอัดสูงสุดของคอนกรีต


    เป็นการเจาะเก็บตัวอย่างคอนกรีตด้วยเครื่องเจาะ (Core Drilling Machine) ที่โครงสร้างคานและเสา เพื่อนำไปทดสอบหาค่ากำลังอัดสูงสุด (Maximun Compressive) ด้วยเครื่องทดสอบกำลังอัด (Compression Machine) ในห้องทดลอง


    เป็นการทดสอบแบบทำลาย (Destructive Test) โดยการสุ่มตัดแท่งตัวอย่างเหล็กเสริมไปทดสอบหาค่ากำลังรับแรงดึง (Tensile Strength, fy) ในห้องปฏิบัตการ การทดสอบแบบนี้
ไม่เหมาะสมที่จะทำเป็นจำนวนมาก เพราะทำให้องค์อาคารเสียหายและต้องซ่อมแซม


เป็นการทดสอบในลักษณะเดียวกับการทดสอบ Rebound Hammer Test ในคอนกรีต โดยการทดสอบนี้จะประเมินค่าความแข็ง (Hardness) ของผิวเหล็กเสริม


    เป็นการสำรวจเพื่อหาตำแหน่งและระบุขนาดของเหล็กเสริมในโครงสร้าง โดยใช้เครื่องมือที่เรียกว่า “COVERMETER” ทำให้สามารถระบุความลึก (Cover Depth)
และขนาดของเหล็กเสริม (Bar Size) ได้ 


    ทดสอบภาคสนามได้โดยใช้สารละลาย phoenophtalein เจือจางฉีดพ่นลงบนผิวคอนกรีตเพื่อดูค่า pH หรือทดสอบในห้องปฏิบัติการโดยเจาะเก็บผงคอนกรีตที่ระยะความลึกต่าง ๆ กัน
มาทดสอบหาค่า pH ในห้องปฏิบัติการ


    ปริมาณของ Chloride เป็นส่วนที่ทำให้เกิดการผุกร่อนเป็นสนิมของเหล็กเสริม การตรวจสอบปริมาณ Chloride เพื่อหาความสัมพันธ์ระหว่างระยะความลึกและปริมาณของ Chloride ตรวจสอบโดยนำผงคอนกรีตที่ระดับความลึกต่างๆ มาทดสอบ และเพื่อหาแนวโน้มการแทรกซึมของ Chloride


    เป็นการทดสอบเพื่อหากำลังในการรับน้ำหนักบรรทุกของโครงสร้างภายใต้น้ำหนักบรรทุกจริง เพื่อศึกษาพฤติกรรมในการรับน้ำหนักของโครงสร้าง โดยการทดสอบจะค่อย ๆ เพิ่มน้ำหนัก
ที่กระทำกับโครงสร้างและวัดค่าการเสียรูปของโครงสร้าง (Deflection)  


    เป็นการทดสอบกำลังรับน้ำหนักบรรทุกของเสาเข็ม โดยวิธี Dynamic Load Test (ASTM D-4945-89 และ AASHTO T 298-93) และวิธี Static Load Test (ASTM D3689-83)
    การทดสอบ Dynamic Load Test จะใช้ลูกตุ้มน้ำหนักปล่อยกระแทกที่หัวเสาเข็ม เพื่อทำให้เกิดคลื่นความเค้น (Stress Wave) ลงไปตลอดตัวเสาเข็มและสะท้อนกลับขึ้นมา ซึ่งจะถูกบันทึกโดยตัว Transducers ประกอบด้วย Strain Gauges และ Accelerometer ที่ติดใกล้กับหัวเสาเข็ม สัญญาณที่ได้ จะนำไปวิเคราะห์หากำลังการรับน้ำหนักบรรทุกของเสาเข็มต่อไป

               

    การทดสอบ Static Load Test จะวางน้ำหนักบรรทุกลงบนหัวเสาเข็มหรือใช้เสาเข็มเป็นตัวยึดโครงเหล็ก (Support Frame) ที่วางพาดอยู่เหนือเสาเข็มทดสอบ จากนั้นใช้แม่แรงไฮดรอลิค
ดันหัวเสาเข็มทดสอบ พร้อมกับตรวจวัดและบันทึกค่าการทรุดจมของเสาเข็มไปด้วยพร้อม ๆ กัน เพื่อนำไปวิเคราะห์หากำลังการรับน้ำหนักบรรทุกของเสาเข็มต่อไป


    เป็นการตรวจสอบความสมบูรณ์ของตัวเสาเข็ม โดยส่งคลื่นความสั่นสะเทือนจากเครื่องกำเนิดความถี่ (Vibrational Machine) ลงไปในเนื้อคอนกรีตของตัวเสาเข็มที่ต้องการตรวจสอบ ทำให้สามารถตรวจสอบสภาพความต่อเนื่องหรือความบกพร่องที่อาจเกิดขึ้นกับตัวเสาเข็มได้ทั้งยังประมาณความลึกของเสาเข็มได้อีกด้วย


    การเจาะสำรวจดิน เพื่อทดสอบหาคุณสมบัติพื้นฐานสำหรับการจำแนกประเภทดิน, กำลังรับแรงเฉือนและคุณสมบัติของดินโดยวิธีต่าง ๆ เพื่อเป็นข้อมูลในการจำแนกประเภทดินและใช้ในการออกแบบฐานราก


    เป็นการทดสอบด้วย Plate Bearing เพื่อตรวจสอบความสามารถในการรับน้ำหนักบรรทุกของพื้นดิน (Soil Bearing Capacity) และ Deformation Characteristic หรือลักษณะ
การทรุดตัวของดิน โดยแสดงผลการทดสอบเป็นกราฟความชันระหว่าง น้ำหนักบรรทุกและการทรุดตัว (Load-Settlement Curve) และกราฟความสัมพันธ์ระหว่างเวลาและการทรุดตัว (Time Settlement Curve)
    ขั้นตอนในการทำงาน เริ่มจากให้น้ำหนักบรรทุกแก่ Test Plate หรือ Plate Loading ซึ่งวางไว้ที่ก้นหลุมในระดับความลึกเดียวกันของฐานรากที่จะก่อสร้างและขนาดของหลุมเจาะทดสอบไม่ควรน้อยกว่า 4 เท่าของความกว้างของ Plate Loading แล้ววัดค่า Settlement หรือการทรุดตัวที่เกิดขึ้น


    เป็นการตรวจสอบ เพื่อหาค่าการล้มเอียงในแนวดิ่งของช่องผนังปล่องลิฟท์ โดยขั้นตอนของการสำรวจตรวจสอบ จะต้องกำหนดจุดอ้างอิง (Reference Point) ภายในช่องลิฟท์ก่อน แล้วตั้งกล้องระดับเลเซอร์ให้แนวแกนกล้องผ่านจุดอ้างอิง อ่านค่าที่ได้ด้วยแผ่นสเกล (Scale Plate) บันทึกข้อมูลโดยค่าที่ได้สามารถนำมาพิจารณาหรือเลือกใช้ขนาดของลิฟท์ต่อไป


    เป็นการตรวจวัดความผุกร่อนของโครงสร้างคอนกรีตเสริมเหล็ก จะวัดความต่างศักย์ไฟฟ้าระหว่างเหล็กเสริมและบริเวณผิวคอนกรีต เพื่อประเมินค่าการกัดกร่อนและสภาพของชั้นหุ้มเหล็กเสริมในช่วงที่ทำการทดสอบ โดยที่ค่าความต่างศักย์ไฟฟ้านี้เป็นผลจากขบวนการกัดกร่อนเหล็กเสริม ค่าความต่างศักย์ไฟฟ้าสูงจะบ่งบอกถึงความเสี่ยงในการกัดกร่อนของเหล็กเสริม
    โดยค่าพลังงานศักย์ไฟฟ้าครึ่งเซลล์ เพื่อวัดปริมาณการกัดกร่อนในเหล็กเสริมของโครงสร้างคอนกรีตหรือสนิมของเหล็กเสริม โดยใช้เครื่องมือ Corrosion Analyzing Instrument เป็นการทดสอบแบบไม่ทำลาย ซึ่งจะใช้บ่งบอกปริมาณการเกิดสนิมเหล็กที่เกิดจากการผ่านกระแสไฟฟ้าเข้าไปในเหล็กบริเวณที่ต้องการตรวจสอบได้ เช่น เหล็กเสริมในโครงสร้างคอนกรีตและท่อร้อยสายไฟที่ฝังในคอนกรีต รวมถึงความต้านทานของคอนกรีต เพื่อประเมินโอกาสการเกิดสนิมของเหล็กเสริมในบริเวณที่ทำการตรวจสอบ โดยศักย์ไฟฟ้าครึ่งเซลล์จะถูกใช้เป็นขั้วไฟฟ้าที่อ้างอิงภายนอกและในการหาค่าพลังงานศักย์ไฟฟ้าครึ่งเซลล์ จะเป็นการที่แท่งทองแดงถูกทำให้อิ่มตัวในสารละลายคอปเปอร์ซัลเฟต (Malhotra, V.M. et al, 2004) การวัดค่าจะได้จากการใช้หลักของการเหนี่ยวนำของความต่างศักย์ เป็นไปตามมาตรฐาน ASTM 876-91


    เป็นการทดสอบเพื่อหากำลังรับแรงดึงของคอนกรีต โดยทำการเจียร สกัด / เปิดให้ถึงเนื้อคอนกรีตเดิม จากนั้นทำความสะอาดและยึดหัวดึงคอนกรีตด้วยกาว Epoxy ทิ้งไว้ให้ยึดติดแน่น นำชุดอุปกรณ์ทดสอบมาติดตั้งพร้อมปรับค่าก่อนทำการทดสอบ อ่านค่าทดสอบที่ได้จากมาตรวัดพร้อมจดบันทึกค่าการทดสอบ เพื่อนำไปเปรียบเทียบเป็นกำลังอัดของคอนกรีต


    เป็นการตรวจวัดพฤติกรรมของโครงสร้างภาคสนามและวิเคราะห์ผลด้วยกระบวนการแปลงผลสัญญาณตรวจวัดด้วยวิธี Digital Signal Processing โดยสามารถประมวลผลได้ ดังนี้
         •    ตรวจวัดคุณสมบัติตรวจวัดคุณสมบัติทางพลศาสตร์ของโครงสร้าง ประกอบไปด้วยความถี่ธรรมชาติ รูปแบบการสั่นไหวและอัตราส่วนความหน่วงของโครงสร้างจาก
              อุปกรณ์ตรวจวัดความเร่ง (Accelerometer)
         •    ตรวจวัดพฤติกรรมการรับแรงของโครงสร้างภายใต้น้ำหนักทดสอบที่ทราบค่า โดยกำหนดตำแหน่งน้ำหนักบรรทุกของโครงสร้างและวิเคราะห์ข้อมูลจากอุปกรณ์วัดค่าความเค้น
              (Strain Gage) และอุปกรณืวัดการเคลื่อนตัว (Displacement Transducer)
         •    ตรวจวัดพฤติกรรมการรับแรงของโครงสร้างภายใต้น้ำหนักทดสอบที่ทราบค่า โดยกำหนดน้ำหนักบรรทุกของโครงสร้างเคลื่อนที่ด้วยความเร็วต่างๆและวิเคราะห์ข้อมูลจาก
              อุปกรณ์วัดค่าความเค้น (Strain Gage) อุปกรณืวัดการเคลื่อนตัว (Displacement Transducer) และอุปกรณ์ตรวจวัดความเร่ง (Accelerometer)


    เป็นการตรวจวัดพฤติกรรมของโครงสร้างภาคสนามและวิเคราะห์ผลด้วยกระบวนการแปลงผลสัญญาณตรวจวัดด้วยวิธี Digital Signal Processing (DSP) เพื่อประมวลผลต่อไป
    นำค่าการตรวจวัดมาเทียบจากกำหนดมาตรฐานการสั่นสะเทือนเพื่อป้องกันผลกระทบกับอาคาร ตามประกาศคณะกรรมการสิ่งแวดล้อมแห่งชาติ ฉบับที่ 37 ปี พ.ศ. 2553 ว่ามีผลกระทบต่อความแข็งแรงของอาคารหรือไม่



ผู้เชี่ยวชาญด้านการตรวจสอบโครงสร้างอาคารที่มีปัญหา ตรวจสอบโครงสร้างเพื่อปรับปรุงการใช้อาคารหรือเปลี่ยนแปลงการใช้อาคาร

วิเคราะห์โครงสร้างเพื่อยืนยันความเเข็งแรง รายงานผลการตรวจสอบและแนวทางการแก้ไข

สามารถสอบถามรายละเอียดเพิ่มเติมได้ที่ บริษัท สยาม เรมีดี จำกัด 02-691-8454-55 , 083-069-2452